

Max. Marks: 70

B.Tech III Year II Semester (R13) Supplementary Examinations December 2016 **REFRIGERATION & AIR CONDITIONING**

(Mechanical Engineering)

Time: 3 hours

PART – A

(Compulsory Question)

Use of refrigeration and air conditioning data hand book and steam tables are permitted in the examination hall.

1 Answer the following: (10 X 02 = 20 Marks)

- (a) What are the reasons why temperature of cabin of aircraft goes up?
- (b) Define ton of refrigeration.
- (c) Define sub-cooling.
- (d) What are the methods to improve the COP of VCR?
- (e) What is the basic difference between vapour compression and vapour absorption refrigeration system?
- (f) Define refrigerant.
- (g) What is dew point temperature?
- (h) Define RSHF line.
- (i) Define humidification.
- (j) Differentiate between heat pump and refrigerator.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- 2 (a) When the Brayton cycle is reversed and operated as a refrigerator, show that the ideal COP of such cycle is given by: $COP = 1/[(p_2/p_1)^{(\gamma-1/\gamma)}-1]$.
 - (b) A Carnot refrigeration requires 1.3 kW per ton of refrigeration to maintain a temperature of -40°C. Determine: (i) COP of the refrigeration. (ii) The temperature at which the heat is rejected. (iii) The amount of heat rejected in kJ/min. (iv) COP, if the cycle used as a heat pump.

OR

3 Explain with neat sketch air refrigeration system. Draw P-V and T-S diagram.

UNIT – II

- 4 (a) Explain with T-S diagram effect of super heating.
 - (b) An Ammonia refrigerator works between -6.7°C to 26°C. The vapour is dry saturated at the end of the compression. Calculate: (i) Theoretical COP. (ii) Power required to run the compressor if the cooling capacity of the refrigeration is 5 tons. Use following properties of NH₃

		Q	-			
Temperature	Specific enthalpy (kJ/kg)		Specific entropy (kJ/kg-K)			
(°C)	Liquid (h _f)	Saturated vapour (hg)	Liquid (s _f)	Saturated vapour (s _g)		
-6.7	-29.26	1262.36	0.1087	4.7401		
26	124.26	1291.62	0.4264	4.3263		
OR						

- 5 (a) Derive an expression for maximum COP by Ewing analysis.
 - (b) A refrigerator plant using CO₂ as refrigerant works between 25°C to -5°C. The dryness of CO₂ is 0.6 at the entry of compressor. Find the ice formed per day if the ice is formed at 0°C from water 10°C, quantity of CO₂ circulated is 10 kg/min.

 C_{pw} =4.187 kJ/kg-K, h_{fq} (ice)= 335 kJ/kh.

Take relative $\eta = 0.6$ and following properties of CO₂

-			
Temperature (°C)	Liquid heat (kJ/kg)	Latent heat (kJ/kg)	Liquid entropy (kJ/kg-K)
25	81.25	121	0.2513
-5	-7.53	245.8	-0.0419
WWW.	MANARES	JLTS.CO.	LN Contd. in page 2

UNIT – III

- 6 (a) Explain with neat sketch Lithium-Bromide absorption refrigeration system.
 - (b) What are the advantages of absorption refrigeration over compression refrigeration system?

OR

- 7 (a) Explain with neat sketch steam jet refrigeration system.
 - (b) In an absorption refrigeration system heating, cooling and refrigeration take place at the temperatures of 150°C, 30°C and -20°C. Find the theoretical COP of the system. If the heating temperature is increased to 200°C and refrigeration temperature is decreased to -40°C, find the percentage change in theoretical COP.

UNIT – IV

- 8 (a) Explain summer air conditioning system with neat sketch.
 - (b) 5 gram of water vapour per kg of atmospheric air is removed and temperature of air after removing the water vapour becomes 25°C DBT. Find relative humidity and dew point temperature. Assume condition of atmospheric air is 35°C and 60% RH and pressure is 1.013 bar.

OR

- 9 (a) Explain with psychometric chart:
 (i) Sensible heating. (ii) Sensible cooling. (iii) Cooling with dehumidification.
 - (b) The DBT and WBT of air are 35°C and 23°C respectively, when barometric reading is 74.5 cm of Hg. Find: (i) Relative humidity.
 - (ii) Specific humidity.
 - (iii) Dew point temperature.

UNIT – V

- 10 (a) Explain with neat sketch dry filter.
 - (b) Explain with neat sketch forward blade, backward blade and radial blade fans.

OR

- 11 (a) Explain with neat sketch atomization type humidifier.
 - (b) Explain with neat sketch how dehumidification takes place by refrigeration.

WWW.MANARESULTS.CO.IN