B.Tech II Year I Semester (R13) Supplementary Examinations November/December 2016

MATHEMATICS - II
(Common to CE and ME)
Max. Marks: 70

PART - A

(Compulsory Question)
1
Answer the following: (10 X $02=20$ Marks $)$
(a) Define rank of a matrix.
(b) State Cayley Hamilton theorem.
(c) Define Transcendental Equation and give one example.
(d) Explain about Newton's Formulae for Interpolation.
(e) Apply Euler's method to solve $y^{\prime}=x+y, y(0)=1$ and find $y(0.2)$ taking step size $\mathrm{h}=0.1$.
(f) Write formula for Simpsons $3 / 8$ rule.
(g) Write Linear Property of Fourier transform.
(h) Write Dirichlet conditions for Fourier Expansion.
(i) Solve $u_{x x}-u_{y}=0$ by separation of variable.
(j) Form the partial Differential Equation by eliminating arbitrary constants a and b from:

$$
z=a x+b y+a^{2}+b^{2}
$$

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

Test for consistency and solve the following system of equations:

$$
\begin{aligned}
& x+2 y+z=3 \\
& 2 x+3 y+2 z=5 \\
& 3 x-5 y+5 z=2 \\
& 3 x+9 y-z=4
\end{aligned}
$$

OR

Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to canonical form by orthogonal reduction.

> UNIT - II

4 (a) Find the root of the equation $x e^{x}=2$ using Newton Raphson method correct to three decimal places.
(b) By the method of least squares, find the straight line that best fits the following data:

x	1	3	5	7	9
y	1.5	2.8	4.0	4.7	6.0

OR

5 (a) Find the cubic polynomial which takes the following values

X	0	1	2	3
$\mathrm{f}(\mathrm{x})$	1	0	1	10

Hence calculate f(4).
(b) Using Lagrange Interpolation formula find the value of y corresponding to $x=10$ from the following table.

X	5	6	9	11
Y	12	13	14	16

6 (a) Given that

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
y	7.989	8.403	8.781	9.129	9.451	9.750	10.031

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=1.1$
(b) A rocket is launched from the ground. Its acceleration is measured every 5 seconds and is tabulated below. Find the velocity and the position of the rocket at $t=40$ seconds. Use Trapezoidal rule.

$\mathrm{t}(\mathrm{sec})$	0	5	10	15	20	25	30	35	40
$\mathrm{a}(\mathrm{t})\left(\mathrm{cm} / \mathrm{sec}^{2}\right)$	40.0	45.25	48.50	51.25	54.35	59.48	61.5	64.3	68.7
OR									

7 (a) Solve $y^{\prime}=x-y^{2}, y(0)=1$ using Taylor's series method and compute $y(0.1) \& y(0.2)$.
(b) Apply the fourth order Runge-Kutta method, to find an approximate value of y when $\mathrm{x}=1.2$ in steps of 0.1 , given that $y^{\prime}=x^{2}+y^{2}, y(1)=1.5$

UNIT - IV

Obtain the Fourier series in $(-\pi, \pi)$ for the function $f(x)=\left\{\begin{array}{c}0,-\pi<x<0 \\ \sin x, 0<x<\pi\end{array}\right.$
OR
Find the Fourier Cosine Transform of $\mathrm{f}(\mathrm{x})$ defined by $f(x)=\frac{1}{1+x^{2}}$ and hence find Fourier sine Transform of $f(x)=\frac{x}{1+x^{2}}$.

UNIT - V

A tightly stretched string of length l with fixed end points is initially in an equilibrium position. It is set vibrating by giving each point a velocity $v_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. Find the displacement $\mathrm{y}(\mathrm{x}, \mathrm{t})$.

OR
An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth is π; this end is maintained at a temperature u_{0} at all points and the other edges are at zero temperature. Determine the temperature at any point of the plate in the steady state.

