B.Tech II Year I semester (R13) Supplementary June 2015 Examinations
 MATHEMATICS - II

(Common to CE \& ME)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1
(a) What is the Skew Hermitian matrix with proper example?
(b) Find the rank of $\left[\begin{array}{lll}0 & 3 & 1 \\ 2 & 3 & 5 \\ 2 & 1 & 2\end{array}\right]$.
(c) State formula for regular Falsi method.
(d) Find $f\left(x_{1}\right)$ an approximate value of the equation $x^{3}+x-1=0$ near $x=1$, using the method of regular falsi.
(e) Using Taylors series method, solve equation $\frac{d y}{d x}=x+y, y(0)=1$.
(f) What is the formula for half range sine series?
(g) Derive a partial differential equation by eliminating the arbitrary function f from the relation $f\left(x^{2}+y^{2}, x^{2}-z^{2}\right)=0$
(h) Find the Eigen values of $A=\left(\begin{array}{ll}8 & 9 \\ 9 & 5\end{array}\right)$.
(i) Form a PDE by eliminating the constants h and k from $(x-h)^{2}+(y-k)^{2}+z^{2}=c^{2}$.
(j) What is the formula for RK fourth order formula?

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2

If $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ then find the matrix represented by

$$
A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I \text { and also find } A^{-1}
$$

OR
Reduce the quadratic form to $2 x y+2 x z-2 y z$ to a canonical form and also find its nature of the matrix.

UNIT - II

Find a real root of the equation $x \log _{10} x=1.2$ by Newton Raphson method correct to five decimal places.
OR
From the following, estimate the number of students who obtained marks between 40 and 45:

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students	31	42	51	35	31

Using Newton's forward interpolation formula.
UNIT - III
Find the value of y for $\mathrm{x}=0.1$ by Picard's method, given that $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$.
OR
Evaluate $\int_{0}^{\pi} \sin x d x$ by dividing the range into 6 equal parts by using: (a) Trapezoidal rule and (b) Simpson's $\frac{1}{3}$ rule.
UNIT - IV
Expand the function $\mathrm{f}(\mathrm{x})=\mathrm{x} \sin \mathrm{x}$, as a Fourier series in the interval $-\pi \leq x \leq \pi$. Hence deduce that $\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-$ $\frac{1}{7.9}+\ldots \ldots \ldots=\frac{\pi-2}{4}$.

OR

Find the Fourier transform of $f(x)=\left\{\begin{array}{cl}1-x^{2} & |x| \leq 1 \\ 0 & |x|>1\end{array}\right.$.
and use it to evaluate $\int_{0}^{\infty}\left(\frac{x \cos x-\sin x}{x^{3}}\right) \cos \frac{x}{2} d x$.
UNIT - IV
Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}$.

$$
\text { WWW.MaPRaResulats. } \mathrm{CO} \text {, in }
$$

Determine the solution of one dimensional heat equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial t^{2}}$ subject to the boundary conditions $u(0, t)=0$, $u(1, t)=0(t>0)$ and initial conditions $u(x, 0)=x, 1$ being the length of the bar.

