B.Tech II Year I semester (R13) Supplementary June 2015 Examinations

MATHEMATICS - II

(Common to CE & ME)

Time: 3 hours

1

2

11

PART – A

(Compulsory Question)

- Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - What is the Skew Hermitian matrix with proper example? (a)
 - Find the rank of $\begin{bmatrix} 0 & 3 & 1 \\ 2 & 3 & 5 \\ 2 & 1 & 2 \end{bmatrix}$ (b)
 - State formula for regular Falsi method. (c)
 - Find $f(x_1)$ an approximate value of the equation $x^3+x-1=0$ near x=1, using the method of regular falsi. (d)
 - Using Taylors series method, solve equation $\frac{dy}{dx} = x + y$, y(0) = 1. (e)
 - What is the formula for half range sine series? (f)
 - Derive a partial differential equation by eliminating the arbitrary function f from the relation $f(x^2+y^2, x^2-z^2) = 0$ (g)
 - (h)
 - Find the Eigen values of $A = \begin{pmatrix} 8 & 9 \\ 9 & 5 \end{pmatrix}$. Form a PDE by eliminating the constants h and k from $(x h)^2 + (y k)^2 + z^2 = c^2$. (i)
 - What is the formula for RK fourth order formula? (i)

PART – B

(Answer all five units, 5 x 10 = 50 Marks)

	UNIT - I
If $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ then find	nd the matrix represented by
	$A^4 - 5A^3 + 8A^2 - 2A + I$ and also find A^{-1} . OR

3 Reduce the quadratic form to 2xy+2xz-2yz to a canonical form and also find its nature of the matrix.

UNIT - II

4 Find a real root of the equation $x \log_{10} x = 1.2$ by Newton Raphson method correct to five decimal places.

OR

5 From the following, estimate the number of students who obtained marks between 40 and 45:

Marks	30-40	40-50	50-60	60-70	70-80	
No. of students	31	42	51	35	31	

Using Newton's forward interpolation formula.

UNIT - III

Find the value of y for x = 0.1 by Picard's method, given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1. 6

- 7 Evaluate $\int_0^{\pi} \sin x \, dx$ by dividing the range into 6 equal parts by using: (a) Trapezoidal rule and (b) Simpson's $\frac{1}{3}$ rule. UNIT - IV
- 8 Expand the function $f(x) = x \sin x$, as a Fourier series in the interval $-\pi \le x \le \pi$. Hence deduce that $\frac{1}{13} - \frac{1}{35} + \frac{1}{57} - \frac{1}{57} + \frac{1}{57} + \frac{1}{57} - \frac{1}{57} + \frac{1}$ $\frac{1}{79}$ + = $\frac{\pi - 2}{4}$.
- Find the Fourier transform of $f(x) = \begin{cases} 1 x^2 & |x| \le 1 \\ 0 & |x| > 1 \end{cases}$ 9 and use it to evaluate $\int_0^\infty \left(\frac{x\cos x - \sin x}{x^3}\right)\cos \frac{x}{2} dx$.

UNIT - IV Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x, 0) = 6e^{-3x}$. 10

Determine the solution of one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial t^2}$ subject to the boundary conditions u(0, t) = 0, u(1, t) = 0 (t>0) and initial conditions u(x, 0) = x, 1 being the length of the bar.

Max. Marks: 70