B.Tech II Year I Semester (R13) Supplementary Examinations June 2016 ELECTRICAL \& ELECTRONICS ENGINEERING

(Mechanical Engineering)
Time: 3 hours
Max. Marks: 70
Answer all questions
All questions carry equal marks
$\star * * * *$
PART - A
(Electrical Engineering)

UNIT - I

1 (a) What is meant by residual magnetism, derive the expression for generated e.m.f in d.c shunt generator?
(b) A shunt generator has a no-load voltage of 250 V when running at a speed of 800 rpm . The terminal voltage drops by 8% when the generator is delivering full load. If the resistances of the armature and the field windings are 0.08Ω and 92Ω respectively, compute the: (i) Output. (ii) Input torque of the generator at full load.

2 (a) Explain the principle and operation of DC machine working as motor.
(b) Discuss the characteristics of dc motors.

UNIT - II

3 (a) Obtain the equivalent circuit referred to primary side of single phase transformer.
(b) The open circuit and short circuit tests on a $4-\mathrm{kVA}, 200 / 400 \mathrm{~V} 50 \mathrm{~Hz}$ single phase transformer gave the following results:
OC test on the LV side: $200 \mathrm{~V}, 1 \mathrm{~A}, 100 \mathrm{~W}$
SC test with the LV side shorted: $15 \mathrm{~V}, 10 \mathrm{~A}, 85 \mathrm{~W}$
Determine the parameters of the equivalent circuit and draw the equivalent circuit referred to LV-side.

OR

4 (a) Explain the construction of a magnetic core of a transformer
(b) A $10 \mathrm{KVA}, 6600 / 220 \mathrm{~V}, 50 \mathrm{~Hz}$ transformer is rated at $2.5 \mathrm{~V} / \mathrm{turn}$ of the winding coils. Assume the transformer to be ideal and calculate: (i) Step-up transformation ratio. (ii) Step-down transformation ratio. (iii) The total turns of high voltage and low voltage coils. (iv) The primary and secondary currents as a stepdown transformer.

UNIT - III

5 (a) Explain the relationship between slip and rotor frequency.
(b) Explain the torque slip characteristics of an induction motor for different values of rotor resistances.

OR

Explain the procedure for evaluating of voltage regulation by synchronous impedance method

PART - B
 (Electronics Engineering)
 UNIT - I

7 Explain about Zener diode and its characteristics and also explain how it works as a voltage regulator.
OR
8 Discuss about Diode switching characteristics.

UNIT - II

9 (a) A transistor has $I_{b}=100 \mu A$ and $I c=2 m A$. Find: (i) β of the transistor. (ii) α of the transistor. (iii) Emitter current Ie. (iv) If I_{b} changes by $+25 \mu A$ and Ic changes by +0.6 mA , find the new value of ' β '.
(b) Explain how a transistor can act as an amplifier

OR

(a) A FET has a drain current of 4 mA . If IDSS $=8 \mathrm{~mA}$ and VGS off $=-6 \mathrm{~V}$. Find values of VGS and VP.
(b) Define $\alpha \mathrm{dc}$ and $\beta \mathrm{dc}$ of a transistor and derive the relation between them.

UNIT - III

11
Find out the 9's complement of following decimal numbers: (i) 459. (ii) 36. (iii) 1697.
WWW ManaRPR sults. CO . In

12 (a) Convert 3C, 104, 3A0 from hexadecimal to decimal
(b) Why digital circuits are more frequently constructed with NAND or NOR gates than AND and OR gates? Explain.

