B.Tech II Year I Semester (R13) Regular Examinations December 2014
 ELECTRICAL \& ELECTRONICS ENGINEERING

(Mechanical Engineering)
Time: 3 hours
Max. Marks: 70
Answer all questions
All questions carry equal marks
Use separate booklets for part A and part B

PART - A
(Electrical Engineering)
UNIT - I
1 (a) (i) Explain the operation of 3-point starter used in DC motors with net diagram.
(ii) Deduce the relation between torque and armature current of DC motor.

OR
2 (b) (i) Explain any one type of DC generators.
(ii) A short shunt compound generator supplies 200 A at 100 V . The resistance of armature, series field and shunt field are $0.04 \Omega, 0.03 \Omega$ and 60Ω respectively. Find E.M.F generated.

UNIT - II

3 (a) (i) Define efficiency and regulation of single phase transformer.
(ii) Derive the E.M.F equation of transformer.

OR
4 (b) On what factors the induced EMF in the transformer windings depends. Justify the answer with appropriate derivation.

5 (a) (i) Explain the principle of operation of induction motor.
(ii) Define the regulation of an alternator and explain how will you find the regulation by synchronous impedance method

OR
6 (b) (i) What is an alternator? Write advantages of stationary armature.
(ii) Write short notes on salient pole type alternator.

PART - B
(Electronics Engineering)

UNIT - I

7 (a) (i) Explain the formation of n type semiconductor.
(ii) Explain the V-I characteristics of a diode.

OR

8 (b) (i) Prove that the voltage regulation for a half wave rectifier is $\left[\left(R_{s}+R_{f}\right) / R_{L}\right] * 100$.
(ii) How does the reverse saturation current of diode varies with temperature? Explain.

UNIT - II

9 (a) (i) Explain the active region, saturation region, cutoff region in transistor characteristics.
(ii) With help of neat diagram explain the operation of an N -channel JFET

OR
10 (b) (i) If the base current in a transistor is $30 \mu \mathrm{~A}$ when the emitter current is 7.2 mA , what are the values of α and β and also calculate the collector current.
(ii) Draw and explain the drain characteristics of n - channel enhancement type MOSFET.

> UNIT - III

11 (a) (i) Convert the following binary numbers into decimals:
(1) 101.01
(2) 10101.0101
(ii) Construction of AND, OR and NOT gate by using NOR gate.

OR
(b) (i) Simplify the logical expression $(A+B) \cdot(A+\bar{B}) \cdot(\bar{A}+B)$.

